研究队伍
  院士专家  
  杰出青年  
  科研骨干  
  研究员  
  副研究员  
  助理研究员  
  您现在的位置:首页 > 研究队伍 > 
  副研究员
付刚
   

  

个人简况

中国科学院地理科学与资源研究所副研究员,硕士生导师,特聘骨干。

主要研究领域与研究方向

依托原位控制试验、样带调查、遥感反演、整合分析和大数据挖掘等技术,从线多尺度,探讨青藏高原高寒生态系统(主要是草地生态系统和农田生态系统)的结构和功能对全球变化的响应及其反馈机制。

主要学术贡献

1.构建了青藏高原高寒草地生态系统的植物物种 α 多样性、牧草营养品质和养分库、土壤pH和土壤含水量的大数据挖掘模型和数据库。在此基础上,量化了气候变化和人类活动对整个青藏高原高寒草地生态系统的物种 α 多样性、牧草营养品质和养分库、土壤pH和土壤含水量的影响:(1)气候变化和人类活动都重塑了物种α 多样性等的时空格局,它们并不总是增加或减少物种α 多样性等。(2)与气候变暖和降水变化相比,辐射变化对物种α 多样性等的影响不容忽视。(3)人类活动改变了物种α多样性等对气候变化的敏感性。(4)前人夸大了气候变化和人类活动造成的植物物种α多样性丧失,而低估了气候变化和人类活动引起的干旱。

2.     物候变化是植物主动适应气候变化的策略:气候变化引起的物候变化对高寒草地生产力的作用,主要是与气候变化的交互作用,而物候变化对高寒草地生产力的单独影响微乎其微。

3.基于整合分析,揭示了青藏高原高寒生态系统对氮添加的普适性响应规律:(1)增氮减少了物种多样性、豆科和杂草地上生物量,而增加了禾草和莎草地上生物量以及土壤铵态氮和硝态氮含量,并导致了土壤酸化。(2)NH4NO3相比,尿素更利于生产力恢复、土壤碳氮的积累;且造成较小幅度的物种损失和土壤酸化。(3)森林、高寒草甸和高寒草原的土壤pH等对氮添加的响应不同。(4)气候变暖和降水增多能增强氮添加引起的土壤酸化;气候变暖会削弱氮添加对植物株高的促进作用,而降水增多则提高氮添加对植物株高的促进作用。(5)高寒土壤pH对长期的氮添加具有一定的适应性。(6)初始的土壤条件能影响高寒土壤pH等对氮添加的响应。(7)氮添加速率越大,氮添加对土壤硝态氮、植物生物量和株高的促进作用越大,氮添加引起的土壤酸化程度也越大。这些普适性规律能为高寒退化草地治理提供指导:当施用氮肥进行退化草地治理时应综合考虑生产力恢复、物种多样性保护和降低土壤酸化间的平衡以及氮肥类型。

4.     基于整合分析,揭示了青藏高原高寒植物生长和生理对UV-B辐射增强的普适性规律:(1)UV-B辐射增强对高寒植物生物量、株高和叶绿素含量等具有抑制作用,而对过氧化物酶和丙二醛等具有促进作用。(2)森林植物和草地植物的光合参数和生物量对UV-B辐射增强的响应不同。(3)降水增多能缓解UV-B增强对植物净光合作用速率的抑制作用。(4)高寒植物的净光合作用速率对长期的UV-B辐射增强具有一定的适应性。

5.     基于整合分析,揭示了青藏高原高寒生态系统对气候变暖的普适性响应规律:(1)增温会增加植物生物量、土壤微生物量和土壤呼吸等。(2)高寒森林和草地的土壤微生物量、铵态氮和硝态氮含量对增温的响应不同。(3)年均温越低,土壤微生物量对增温的响应幅度越大。

6.     基于藏北当雄县高寒草地生态系统的原位控制试验,揭示了(1)植物地上净初级生产力、植物多样性和土壤微生物多样性的温度敏感性并没有随着海拔的升高而增强,相反甚至随着海拔的升高而降低,这些新发现与前人有关海拔越高温度敏感性越大的认知不同。(2)生产力的温度敏感性主要与温度本身有关,且存在三基点(最低、最适和最高)”增温幅度,如增温3℃时,增温对生产力的增幅最大。(3)与增温幅度本身相比,季节不对称增温对生产力和土壤呼吸的影响更大,尤其是冬季增温幅度越大生产力和土壤呼吸的增幅越大。(4)与生长季节/非生长季节非对称气候变暖相比,生长季节/非生长季节对称气候变暖低估了植物生产力和土壤呼吸等对气候变暖的响应。(5)海拔间对称增温(不同海拔间的增温幅度相同)低估了海拔间不对称增温(海拔越高,增温幅度越大)对植物地上净初级生产力和植物多样性的影响,海拔间不对称增温将会均质化植物地上净初级生产力、植物物种和系统发育α 多样性、植物物种群落组成和系统发育组成。(6)植物生产力和土壤呼吸等的年际变异不容忽视,它们的年际变异甚至大于它们对气候变暖的响应。

7.     基于藏北高原的围栏和放牧配对试验以及刈割试验,发现了(1)放牧对藏北高寒草地植物和土壤微生物物种和系统发育多样性等的影响与季节性放牧和草地类型有关。与暖季放牧相比,冷季放牧不一定总是导致更大幅度的破坏,这与前人有关冷季放牧比暖季放牧对高寒草地生态系统的破坏更严重的预期不同(2)放牧对高寒草地牧草营养品质和植物生物量的影响受气候变暖和降水增多的调控。(3)放牧条件下,植物多样性、土壤细菌多样性和土壤真菌多样性的耦合机制。(4)物种多样性和系统发育多样性对放牧的响应不同,综合物种多样性和系统发育多样性更能全面反映放牧对植物和土壤微生物多样性的影响机制。这些科学发现能为青藏高原草地的分类放牧管理提供指导。

8.     基于中科院拉萨站的大田试验,揭示了农田生态系统(青稞、青饲玉米、紫花苜蓿和垂穗披碱草)对气候变暖的响应规律:(1)1.5℃2℃增温都没有改变青稞秸秆产量、土壤呼吸及其温度敏感性。(2)3.2℃增温缩短了青饲玉米生育期,而没有改变其秸秆产量,也没有改变土壤呼吸。(3)豆科作物(多年生紫花苜蓿)土壤真菌群落结构对增温的响应与禾本科作物土壤真菌群落结构对增温的响应不同,且一年生禾本科作物(青稞)土壤真菌群落结构对增温的响应与多年生禾本科作物(垂穗披碱草)土壤真菌群落结构对增温的响应不同。增温会增加紫花苜蓿土壤病原真菌丰度,而减少紫花苜蓿土壤共生真菌丰度,从而对紫花苜蓿产生不利影响。(4)白天增温和晚上增温对青稞土壤真菌多样性的影响不同,且青稞土壤真菌物种、系统发育和功能多样性对增温的响应不同。因此,从多维度探讨土壤真菌群落结构对增温的响应更能反映气候变暖背景下高寒农田土壤真菌群落结构的变化。这些发现能为气候变化背景下青藏高原的粮食安全、饲草安全等提供指导。

主要学术成就

1.     以第一/通讯作者在Science of the Total EnvironmentAgricultural and Forest MeteorologyAgriculture, Ecosystems & EnvironmentLand Degradation & DevelopmentApplied Soil EcologyEcological EngineeringEcological IndicatorsFrontiers in Plant SciencePlantsRemote Sensing等刊物上发表90多篇论文,其中59SCI论文(中国科学院文献情报中心分区:1–2区论文37篇,TOP期刊论文17篇;JCR分区:12区论文46)SCI 论文被引>1500 次(单篇最大被引>110 ;两篇高被引);非SCI 论文被引>430 次(单篇最大被引>90 次),H-index=27 (ResearchGate)。此外,参与发表20多篇论文。

2.     成果《藏北高寒草地生态系统变化分析与退化草地综合治理技术》获2015年西藏自治区科学技术奖一等奖(个人排名第六)。成果《藏北高寒草地生态系统对气候变暖的响应机制研究》获2018年西藏自治区科学技术奖二等奖(个人排名第一)。成果《青藏高原高寒生态系统对全球变化的响应和适应机制》入选中国科学院地理科学与资源研究所2019 年十大进展(个人排名第二)。成果《西藏高寒草地生态系统的生物多样性和生产力对全球变化的响应》入选中国科学院地理科学与资源研究所2022 年十大进展(个人排名第一)。

3.     2013年度中国科学院地理科学与资源研究所优秀博士论文和中国科学院西部之光人才资助,2016 年度中国科学院地理科学与资源研究所优秀青年出国留学奖励基金。入选 2018 年度中国科学院地理科学与资源研究所秉维优秀青年人才和 2020年度中国科学院青年创新促进会会员。

国内外科研机构及重要学术期刊任职情况

1.     西南民族大学青藏高原研究院硕士生导师。

2.     《草地学报》编委。

3.     《草业科学》责任编委。

4.     Nature Reviews Earth & EnvironmentGlobal Change BiologyAgricultural and Forest MeteorologyGeodermaCatena等刊物审稿人。

一作/通讯作者SCI (*通讯作者)

1.       Jianyu Xiao, Chengqun Yu, Fu Gang*.  Influences of human activity and climate change on growing-season soil moisture in the Qinghai-Tibet grasslands from 2000 to 2020.  Frontiers in Ecology and Evolution, 2024, 12, doi: 10.3389/fevo.2023.1264870.

2.       Guangyu Zhang, Dai Erfu, Dawaqiongda, Luobu, Fu Gang*. Effects of climate change and fencing on forage nutrition quality of alpine grasslands in the Northern Tibet. Plants, 2023, 12(18), 3182, doi: 10.3390/plants12183182.

3.       Zhiming Zhong, Guangyu Zhang, Fu Gang*.  Effect of experiment warming on soil fungi community of Medicago sativa, Elymus nutans and Hordeum vulgare in Tibet. Journal of Fungi, 2023, 9(9), 885, doi: 10.3390/jof9090885.

4.       Jianyu Xiao, Chengqun Yu, Fu Gang*. Response of aboveground net primary production, species and phylogenetic diversity to warming and increased precipitation in an alpine meadow. Plants, 2023, 12(17), 3017, doi: 10.3390/plants12173017.

5.       Shaolin Huang, Xinjie Zha, Fu Gang*.  Affecting factors of plant phyllosphere microbial community and their responses to climatic warming–a review.  Plants, 2023, 12(16), 2891, doi: 10.3390/plants12162891.

6.       Shaowei Li, Fu Gang*.  Impacts of anthropogenic activities and climate change on forage nutrition storage in Tibetan grasslands.  Plants, 2023, 12(14), 2735, doi: 10.3390/plants12142735.

7.       Dai Erfu, Zhang Guangyu, Fu Gang*, Zha Xinjie.  Can meteorological data and normalized difference vegetation index be used to quantify soil pH in grasslands?  Frontiers in Ecology and Evolution, 2023, 11, doi: 10.3389/fevo.2023.1206581.

8.       Huang Shaolin, Fu Gang*.   Impacts of climate change and human activities on plant species α-diversity across the Tibetan grasslands. Remote Sensing, 2023, 15(11), doi: 10.3390/rs15112947.

9.       Sun Wei, Li Shaowei, Zhang Guangyu, Fu Gang*, Qi Huxiao, Li Tianyu.  Effects of climate change and anthropogenic activities on soil pH in grassland regions on the Tibetan Plateau. Global Ecology and Conservation, 2023, 45, doi: 10.1016/j.gecco.2023.e02532.

10.    Han Fusong, Yu Chengqun, Fu Gang*.  Temperature sensitivities of aboveground net primary production, species and phylogenetic diversity do not increase with increasing elevation in alpine grasslands.  Global Ecology and Conservation, 2023, 43, doi: 10.1016/j.gecco.2023.e02464.

11.    Han Fusong, Yu Chengqun, Fu Gang*.  Asymmetric warming among elevations may homogenize plant α-diversity and aboveground net primary production of alpine grasslands.  Frontiers in Ecology and Evolution, 2023, 11, doi: 10.3389/fevo.2023.1126651.

12.    Wang Shaohua, Fu Gang*.  Modelling soil moisture using climate data and normalized difference vegetation index based on nine algorithms in alpine grasslands.  Frontiers in Environmental Science, 2023, doi: 10.3389/fenvs.2023.1130448.

13.    Han Fusong, Yu Chengqun, Fu Gang*.  Non-growing/growing season non-uniform-warming increases precipitation use efficiency but reduces its temporal stability in an alpine meadow. Frontiers in Plant Science, 2023, 14, doi: 10.3389/fpls.2023.1090204. 高被引论文

14.    Zhang Guangyu, Shen Zhenxi, Fu Gang*.  Geo-distribution patterns of soil fungal community of Pennisetum flaccidum in Tibet.  Journal of Fungi, 2022, 8(11), doi: 10.3390/jof8111230.

15.    Han Fusong, Yu Chengqun, Fu Gang*.  Warming alters elevation distributions of soil bacterial and fungal communities in alpine grasslands.  Global Ecology and Conservation, 2022, 39, doi: 10.1016/j.gecco.2022.e02306.

16.    Tian Yuan, Fu Gang*. Quantifying plant species alpha-diversity using normalized difference vegetation index and climate data in alpine grasslands. Remote Sensing, 2022, 14(19), 5007, doi: 10.3390/rs14195007.

17.    Zha Xinjie, Tian Yuan, Ouzhu, Fu Gang*. Response of forage nutrient storages to grazing in alpine grasslands. 2022, Frontiers in Plant Science, 13, doi:10.3389/fpls.2022.991287.

18.    Fu Gang*, Wang Junhao, Li Shaowei*.  Response of forage nutritional quality to climate change and human activities in alpine grasslands.  Science of the Total Environment, 2022, 845, doi: 10.1016/j.scitotenv.2022.157552.

19.    Han Fusong, Fu Gang*, Yu Chengqun, Wang Shaohua.  Modelling nutrition quality and storage of forage using climate data and normalized difference vegetation index in alpine grasslands. Remote Sensing, 2022, 14(14), 3410, doi: 10.3390/rs14143410. 

20.    Fu Gang*, Sun wei*.  Temperature sensitivities of vegetation indices and aboveground biomass are primarily linked with warming magnitude in high-cold grasslands.  Science of the Total Environment, 2022, 843, doi: 10.1016/j.scitotenv.2022.157002.

21.    Zhong Zhiming, Fu Gang*.  Response of soil fungal species, phylogenetic and functional diversity to diurnal asymmetric warming in an alpine agricultural ecosystem.  Agriculture, Ecosystems & Environment, 2022, 335, doi: 10.1016/j.agee.2022.107993.

22.    Fu Gang*, Shen Zhenxi.  Asymmetrical warming of growing/non-growing season increases soil respiration during growing season in an alpine meadow.  Science of the Total Environment, 2022, 812, doi: 10.1016/j.scitotenv.2021.152591.

23.    Wang Jiangwei#, Li Meng#, Yu Chengqun, Fu Gang*. The change in environmental variables linked to climate change has a stronger effect on aboveground net primary productivity thandoes phenological change in alpine grasslands.  Frontiers in Plant Science, 2022, 12, doi: 10.3389/fpls.2021.798633. 高被引论文

24.    Wang Jiangwei, Yu Chengqun, Fu Gang*.  Warming reconstructs the elevation distributions of aboveground net primary production, plant species and phylogenetic diversity in alpine grasslands.  Ecological Indicators, 2021, 133, doi: 10.1016/j.ecolind.2021.108355.

25.    Wang Jiangwei, Yu Chengqun, Fu Gang*.  Asymmetrical warming between elevations may result in similar plant community composition between elevations in alpine grasslands.  Frontiers in Ecology and Evolution, 2021, 9, doi: 10.3389/fevo.2021.757943.

26.    Zong Ning, Fu Gang*.  Variations in species and function diversity of soil fungal community along a desertification gradient in an alpine steppe. Ecological Indicators, 2021, 131, doi: 10.1016/j.ecolind.2021.108197.

27.    Zhang Guangyu, Shen Zhenxi, Fu Gang*. Function diversity of soil fungal community has little exclusive effects on the response of aboveground plant production to experimental warming in alpine grasslands. Applied Soil Ecology, 2021, 168, doi: 10.1016/j.apsoil.2021.104153.

28.    Sun Wei#, Li Shaowei#, Wang Junhao#, Fu Gang*. Effects of grazing on plant species and phylogenetic diversity in alpine grasslands, Northern Tibet.  Ecological Engineering, 2021, 170, doi: 10.1016/j.ecoleng.2021.106331.

29.    Zhang Haorui, Fu Gang*. Responses of plant, soil bacterial and fungal communities to grazing vary with pasture seasons and grassland types, Northern Tibet. Land Degradation & Development, 2021, 32(4): 1821-1832. doi:10.1002/ldr.3835.

30.    Zhang Haorui, Li Shaowei, Zhang Guangyu, Fu Gang*. Response of soil microbial communities to warming and clipping in alpine meadows in Northern Tibet.  Sustainability, 2020, 12, 5617; doi:10.3390/su12145617.

31.    Yu Chengqun#, Han Fusong#, Fu Gang*.  Effects of 7 years experimental warming on soil bacterial and fungal community structure in the Northern Tibet alpine meadow at three elevations. Science of the Total Environment, 2019, 655: 814-822. doi:10.1016/j.scitotenv.2018.11.309. 

32.    Fu Gang#, Zhang Haorui#, Sun Wei*. Response of plant production to growing/non-growing season asymmetric warming in an alpine meadow of the Northern Tibetan Plateau.  Science of the Total Environment, 2019, 650: 2666-2673.  doi:10.1016/j.scitotenv.2018.09.384.

33.    Yu Chengqun, Wang Jiangwei, Shen Zhenxi, Fu Gang*.  Effects of experimental warming and increased precipitation on soil respiration in an alpine meadow in the Northern Tibetan Plateau.Science of the Total Environment, 2019, 647: 1490-1497. doi:10.1016/j.scitotenv.2018.08.111.

34.    Fu Gang*, Shen Zhenxi, Zhang Xianzhou.  Increased precipitation has stronger effects on plant production of an alpine meadow than does experimental warming in the Northern Tibetan Plateau.   Agricultural and Forest Meteorology, 2018, 249:11-21. doi:10.1016/j.agrformet.2017.11.017.

35.    Wu Jianshuang, Fu Gang*.   Modelling aboveground biomass using MODIS FPAR/LAI data in alpine grasslands of the Northern Tibetan Plateau.  Remote Sensing Letters, 2018, 9(2): 150-159. doi:10.1080/2150704X.2017.1407045.

36.    Fu Gang*, Shen Zhenxi. Clipping has stronger effects on plant production than does warming in three alpine meadow sites on the Northern Tibetan Plateau.  Scientific Reports, 2017, 7,16330, doi: 10.1038/s41598-017-16645-2. 

37.    Fu Gang, Wu Jianshuang*.  Validation of MODIS Collection 6 FPAR/LAI in the alpine grassland of the Northern Tibetan Plateau.  Remote Sensing Letters, 2017. 8(9):831-838. doi:10.1080/2150704X.2017.1331054.

38.    Fu Gang*, Zhang Jing, Shen Zhenxi, Shi Peili, He Yongtao, Zhang Xianzhou.  Validation of collection 6 MODIS/Terra and MODIS/Aqua gross primary production in an alpine meadow of the Northern Tibetan Plateau.    International Journal of Remote Sensing, 2017, 38(16): 4517-4534. doi:10.1080/01431161.2017.1323283.

39.    Fu Gang*, Shen Zhenxi.  Response of alpine soils to nitrogen addition on the Tibetan Plateau: a meta-analysis. Applied Soil Ecology, 2017, 114: 99-104. doi:10.1016/j.apsoil.2017.03.008.

40.    Fu Gang, Shen Zhenxi*.  Effects of enhanced UV-B radiation on plant physiology and growth on the Tibetan Plateau: a meta-analysis.  Acta Physiologiae Plantarum, 2017, 39(3): 85. doi: 10.1007/s11738-017-2387-8.

41.    Fu Gang, Shen Zhenxi*. Environmental humidity regulates effects of experimental warming on vegetation index and biomass production in an alpine meadow of the Northern Tibet.  Plos One, 2016, 11(10): doi: 10.1371/journal.pone.0165643.

42.    Fu Gang, Shen Zhenxi*. Response of alpine plants to nitrogen addition on the Tibetan Plateau: a meta-analysis. Journal of Plant Growth Regulation, 2016, 35(4): 974-979. doi:10.1007/s00344-016-9595-0.

43.    Fu Gang, Li Shaowei, Sun Wei, Shen Zhenxi*. Relationships between vegetation carbon use efficiency and climatic factors on the Tibetan Plateau. Canadian Journal of Remote Sensing, 2016, 42(1): 16-26.  doi: 10.1080/07038992.2016.1131115.

44.    Shen Zhenxi, Wang Jiangwei, Sun Wei, Li Shaowei, Fu Gang*, Zhang Xianzhou, Zhang Yangjian, Yu Chenqun, Shi Peili, He Yongtao. The soil drying along the increase of warming mask the relation between temperature and soil respiration in an alpine meadow of Northern Tibet. Polish Journal of Ecology, 2016, 64(1): 125–129.  DOI:10.3161/15052249PJE2015.64.1.011

45.    Zhong Zhiming#, Shen Zhenxi#, Fu Gang*. Response of soil respiration to experimental warming in a highland barley of the Tibet. SpringerPlus, 2016, 5 (137): doi: 10.1186/s40064-016-1761-0.

46.    Shen Zhenxi#, Li Yunlong#, Fu Gang*. Response of soil respiration to short-term experimental warming and precipitation pulses over the growing season in an alpine meadow on the Northern Tibet. Applied Soil Ecology, 2015, 90: 35-40. doi: 10.1016/j.apsoil.2015.01.015

47.    Zhang Xianzhou#, Shen Zhenxi#, Fu Gang*. A meta-analysis of the effects of experimental warming on soil carbon and nitrogen dynamics on the Tibetan Plateau. Applied Soil Ecology, 2015, 87: 32-38.  doi: 10.1016/j.apsoil.2014.11.012

48.    Fu Gang*, Shen Zhenxi, Sun Wei, Zhong Zhiming, Zhang Xianzhou, Zhou Yuting. A meta-analysis of the effects of experimental warming on plant physiology and growth on the Tibetan Plateau. Journal of Plant Growth Regulation, 2015, 34 (1): 57-65. doi: 10.1007/s00344-014-9442-0.

49.    Fu Gang#, Sun Wei#, Yu Chengqun, Zhang Xianzhou, Shen Zhenxi*, Li Yunlong, Yang Pengwan, Zhou Nan. Clipping alters the response of biomass production to experimental warming: a case study in an alpine meadow on the Tibetan Plateau, China. Journal of Mountain Science, 2015, 12 (4): 935-942. doi: 10.1007/s11629-014-3035-z

50.    Wang Shaohua, Sun Wei, Li Shaowei, Shen Zhenxi, Fu Gang*. Interannual variation of the growing season maximum normalized difference vegetation index, MNDVI, and its relationship with climatic factors on the Tibetan Plateau. Polish Journal of Ecology, 2015, 63 (3): 424-439. doi: 10.3161/15052249PJE2015.63.3.012

51.    Shen Zhenxi, Fu Gang*, Yu Chengqun, Sun Wei, Zhang Xianzhou. Relationship between the growing season maximum enhanced vegetation index and climatic factors on the Tibetan Plateau. Remote Sensing, 2014, 6 (8): 6765-6789.  doi: 10.3390/rs6086765

52.    Fu Gang, Zhang Xianzhou, Zhou Yuting, Yu Chengqun, Shen Zhenxi*. Partitioning sources of ecosystem and soil respiration in an alpine meadow of Tibet Plateau using regression method. Polish Journal of Ecology, 2014, 62 (1): 17-24.

53.    Fu Gang, Zhang Xianzhou, Yu Chengqun, Shi Peili, Zhou Yuting, Li Yunlong, Yang Pengwan, Shen Zhenxi*. Response of soil respiration to grazing in an alpine meadow at three elevations in Tibet. Scientific World Journal, 2014: doi: 10.1155/2014/265142.

54.    Yu Chengqun, Shen Zhenxi, Zhang Xianzhou, Sun Wei, Fu Gang*. Response of soil C and N, dissolved organic C and N, and inorganic N to short-term experimental warming in an alpine meadow on the Tibetan Plateau. Scientific World Journal, 2014,: doi: 10.1155/2014/152576.

55.    Fu Gang, Shen Zhenxi, Zhang Xianzhou*, Yu Chengqun, Zhou Yuting, Li Yunlong, Yang Pengwan.  Response of ecosystem respiration to experimental warming and clipping at daily time scale in an alpine meadow of Tibet. Journal of Mountain Science, 2013, 10 (3): 455-463.  doi:10.1007/s11629-013-2360-y

56.    Fu Gang, Zhang Xianzhou, Zhang Yangjian, Shi Peili, Li Yunlong, Zhou Yuting, Yang Pengwan, Shen Zhenxi. Experimental warming does not enhance gross primary production and above-ground biomass in the alpine meadow of Tibet. Journal of Applied Remote Sensing, 2013, 7 (1): doi: 10.1117/1.JRS.7.073505.

57.    Fu Gang, Shen Zhenxi, Zhang Xianzhou, Zhou Yuting. Response of soil microbial biomass to short-term experimental warming in alpine meadow on the Tibetan Plateau.  Applied Soil Ecology, 2012, 61:158-160.  doi: 10.1016/j.apsoil.2012.05.002

58.    Fu Gang, Shen Zhenxi, Zhang Xianzhou, Zhou Yuting, Zhang Yangjian.  Response of microbial biomass to grazing in an alpine meadow along an elevation gradient on the Tibetan Plateau.  European Journal of Soil Biology, 2012, 52:27-29.  doi: 10.1016/j.ejsobi.2012.05.004

59.    Fu Gang, Shen Zhenxi, Zhang Xianzhou, Shi Peili, He Yongtao, Zhang Yangjian, Sun Wei, Wu Jianshuang, Zhou Yuting, Pan Xu.  Calibration of MODIS-based gross primary production over an alpine meadow on the Tibetan Plateau. Canadian Journal of Remote Sensing, 2012, 38(2): 157-168. doi: 10.5589/m12-023.

合作发表文章代表作 (*通讯作者)

1.        Niu Bei, Zhang Xianzhou, Piao Shilong, Janssens, I.A., Fu Gang, He, Y., Zhang, Y., Shi, P., Dai, E., Yu, C., Zhang, J., Yu, G., Xu, M., Wu, J., Zhu, L., Desai, A.R., Chen, J., Bohrer, G., Gough, C.M., Mammarella, I., Varlagin, A., Fares, S., Zhao, X., Li, Y., Wang, H., Ouyang, Z., Warming homogenizes apparent temperature sensitivity of ecosystem respiration. Science Advances, 2021. 7. doi: 10.1126/sciadv.abc7358.

2.       Sun, Jian, Hou Ge, Liu Miao, Fu Gang, Zhan, T.Y., Zhou, H.K., Tsunekawa, A., Haregeweyn, N.,. Effects of climatic and grazing changes on desertification of alpine grasslands, Northern Tibet. Ecol. Indicator, 2019, 107, doi:j.ecolind.2019.105647. 

招生专业:生态学

招生方向:全球变化生态学

联系方式fugang@igsnrr.ac.cn; 13401139763

更新日期:202310