专家人才

张永强

  

  中科院地理科学与资源研究所二级研究员,中科院率先行动海外高层次A类学术帅才,中科院陆地水循环及地表过程重点实验室副主任,国家重点研发特大干旱项目首席科学家,德国洪堡学者,澳大利亚/新西兰模型模拟学会会士。共发表SCI期刊论文200多篇,以第一/通讯作者在Nature WaterNature Communications等期刊发表论文98篇,Web of Science论文总他引8600余次,h指数48, 连续入选了20212022年度爱思唯尔地理学中国高被引学者,在谷歌学者陆面蒸散发领域全球排名列第7位。现任国际模型模拟协会水文气象部主任,现任包括Journal of HydrologyJournal of Geophysical Research–AtmospheresRemote Sensing of Environment6个国际主流期刊编委。

  研究领域和方向:

  水文学与水资源。主要研究方向为全球蒸散发机理和过程、生态水文过程、基于遥感手段的水文过程模拟、预测和预估、干旱和洪水极端水文过程模拟和预报等。

  主要学术贡献:

  潜心研究区域与全球水循环机理、过程和模拟,代表性研究成果包括:

  1在理论和方法方面,发展了新的植被气孔导度估算方法,解析了植被碳水耦合过程机理,发展了非均一下垫面参数化方法;

  2在建模和数据方面,构建了全球广泛使用的PML遥感蒸散发模型,研发了全球高精度遥感蒸散发产品,发展了耦合遥感蒸散发的新型水文模型,提升了测站稀缺地区水文过程模拟能力;

  3在格局和过程方面,明确了全球蒸散发各分量的分配比例,揭示了植被变绿对全球蒸散发和径流的变化贡献,阐明了植被变绿的生态水文效应,预估了变化环境下未来全球不同区域的径流变化特征。

  主持项目:

  主持了包括国家重点研发项目跨流域跨区域特大干旱场景推演和智慧防御系统和中科院高层次A类学术帅才项目区域和全球水循环15项国家级和地方委托项目,合同科研经费 >3000万。

  5年的代表性论文(倒序排列):

  [1]     Wang LH, Zhang YQ*, Ma N, Song PL, Tian J, Zhang XZ, Xu ZW, (2023). Diverse responses of canopy conductance to heatwaves. Agricultural and Forest Meteorology. https://doi.org/10.1016/j.agrformet.2023.109453 (IF = 6.424)

  [2]     Zhang YQ*, Zheng HX, Zhang XZ, Leung LR, Liu CM, Zheng CM, Guo YH, Chiew FHS, Post DA, Kong DD, Beck HE, Li CC, Bl?schl G*, (2023). Future global streamflow declines likely more severe than previously estimated. Nature Water, https://doi.org/10.1038/s44221-023-00030-7.

  [3]     Shao XM, Zhang YQ*, Ma N, Zhang XZ, Tian J, Liu CM, (2023). Flood Increase and Drought Mitigation Under a Warming Climate in the Southern Tibetan Plateau. Journal of Geophysical Research: Atmospheres, e2022JD037835. (IF = 5.217)

  [4]     Huang Q, Zhang YQ*, Ma N, Post D, (2022). Estimating Vegetation Greening Influences on Runoff Signatures Using a Log-Based Weighted Ensemble Method. Water Resources Research, doi: /10.1029/2022WR032492. (IF = 6.160)

  [5]     He SY, Zhang YQ*, Ma N, Tian J, Kong DD, Liu CM, (2022). A daily and 500 m coupled evapotranspiration and gross primary production product across China during 2000–2020. Earth System Science Data 14 (12), 5463-5488. (IF = 11.333)

  [6]     Meresa H, Zhang YQ*, Tian J, Faiz MA, (2022). Understanding the role of catchment and climate characteristics in the propagation of meteorological to hydrological drought. Journal of Hydrology, 128967 (IF = 6.708)

  [7]     Luan JK, Miao P, Tian XG, Li XJ, Ma N, Xu ZW, Wang HM, Zhang YQ*, (2022). Separating the impact of check dams on runoff from climate and vegetation changes. Journal of Hydrology, 128565

  [8]     Meresa H, Zhang YQ*, Tian J, Ma N, Zhang XZ, Heidari H, Naeem S, (2022). An Integrated Modeling Framework in Projections of Hydrological Extremes. Surveys in Geophysics, 1-46, https://doi.org/10.1007/s10712-022-09737-w. (IF = 7.722)

  [9]     Faiz MA, Zhang YQ*, Tian XQ, Tian J, Zhang X, Ma N, Aryal S, (2022). Drought index revisited to assess its response to vegetation in different agroclimatic zones. Journal of Hydrology, 128543 (IF = 6.708)

  [10] Xu Z, Zhang YQ*, Zhang X, Ma N, Tian J, Kong D, Post D, (2022). Bushfireinduced Water Balance Changes Detected by a Modified Paired Catchment Method. Water Resources Research, doi: /10.1029/2021WR031013. (IF = 6.160)

  [11] Meresa H, Zhang YQ*, Tian J, Faiz MA, (2022). Disentangling aggregated uncertainty sources in peak flow projections under different climate scenarios. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2022.128426. (IF = 6.708)

  [12] Tian J, Zhang YQ*, Guo JP, Zhang XZ, Ma N, Wei HS, Tang ZX, (2022). Predicting root zone soil moisture using observations at 2121 sites across China. Science of The Total Environment, 847, 157425. (IF = 10.753)

  [13] Ma N*, Zhang YQ*, (2022). Contrasting trends in water use efficiency of the alpine grassland in Tibetan Plateau. Journal of Geophysical Research: Atmospheres, e2022JD036919. (IF = 5.217)

  [14] Song P, Zhang YQ*, Guo JP*, Shi J, Zhao T, Tong B, (2022). A 1km daily surface soil moisture dataset of enhanced coverage under all-weather conditions over China in 2003-2019. Earth System Science Data, 14(6): 2613-2637. (IF = 11.333)

  [15] Shao XM, Zhang YQ*, Liu C, Chiew FHS, Tian J, Ma N, Zhang X, (2022). Can indirect evaluation methods and their fusion products reduce uncertainty in actual evapotranspiration estimates? Water Resources Research, e2021WR031069. (IF = 6.160)

  [16] Luan J, Miao P, Tian X, Li X, Ma N, Faiz MA, Xu Z, Zhang YQ*, (2022). Estimating hydrological consequences of vegetation greening. Journal of Hydrology, 128018. (IF = 6.708)

  [17] Sun WY, Ding X, Su J, Mu XM*, Zhang YQ*, Gao P, Zhao G, (2022). Land use and cover changes on the Loess Plateau: A comparison of six global or national land use and cover datasets. Land Use Policy, 119, 106165. (IF = 6.189)

  [18] Zhang X*, Zhang YQ*, Tian J, Ma N, Wang YP, (2022). CO2 fertilization is spatially distinct from stomatal conductance reduction in controlling ecosystem water-use efficiency increase. Environmental Research letters 17(5), 054048. (IF = 6.947)

  [19] Ma N*, Zhang YQ*, (2022). Increasing Tibetan Plateau terrestrial evapotranspiration primarily driven by precipitation. Agricultural and Forest Meteorology, https://doi.org/10.1016/j.agrformet.2022.108887. (IF = 6.424, ESI TOP 1% highly cited paper)

  [20] Zhang YQ*, Viglione A., Bl?schl G, (2022). Temporal scaling of streamflow elasticity to precipitation: A global analysis. Water Resources Research, 58, e2021WR030601. https://doi.org/10.1029/2021WR030601. (IF = 6.160)

  [21] Lyu S, Zhai Y, Zhang YQ*, Cheng L, Kumar P, Song J, Wang Y, Huang M, Fang H, Zhang J*, (2022).  Baseflow signature behaviour of mountainous catchments around the North China Plain. Journal of Hydrology, 606, 127450 (IF = 6.708)

  [22] Faiz AM, Zhang YQ*, Zhang XZ, Ma N, Aryal SK, Thi Viet Ha T, Baig F, Na F, (2022). A composite drought index developed for detecting large-scale drought characteristics. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2021.127308. (IF = 6.708)      

  [23] Zhang XZ*, Zhang YQ*, Ma N, Kong DD, Tian J, Shao XM, Tang Q, (2021). Greening-induced increase in evapotranspiration over Eurasia offset by CO2-induced vegetational stomatal closure. Environmental Research Letters, 16 (12), 124008. (IF = 6.947)

  [24] Gan R, Zhang L, Yang Y, Wang EL, Woodgate W, Zhang YQ*, Haverd V, Kong DD, Fischer T, Chiew C, Yu Q*, (2021). Estimating ecosyste maximum light use efficiency based on the water use efficiency principle. Environmental Research Letters, 16 (10), 104032. (IF = 6.947)

  [25] Song PL, Zhang YQ*(2021). An improved non-linear inter-calibration method on different radiometers for enhancing coverage of daily LST estimates in low latitudes, Remote Sensing of Environment, 112626. (IF = 13.850)

  [26] Ma N*, Szilagyi J, Zhang YQ*, (2021). Calibration-free complementary relationship estimates terrestrial evapotranspiration globally. Water Resources Research, e2021WR029691. (IF = 6.160)

  [27] Li XJ, Zhang YQ*, Ma N, Li CC, Luan JK. Contrasting effects of climate and LULC change on blue water resources at varying temporal and spatial scales. Science of The Total Environment, 2021, 786, 147488. (IF = 10.753)

  [28] Luan JK, Zhang YQ*, Ma N, Tian J, Li XJ, Liu D, (2021). Evaluating the uncertainty of eight approaches for separating the impacts of climate change and human activities on streamflow. Journal of Hydrology, 126605. (IF = 6.708)

  [29] Sharma C, Shukla AK, Zhang YQ*, (2021). Climate change detection and attribution in the Ganga-Brahmaputra-Meghna river basins. Geoscience Frontiers, 12(5), 101186. (IF = 7.483)

  [30] Tian J, Zhang YQ*, Zhang XZ, (2021). Impacts of heterogeneous CO2 on water and carbon fluxes across the global land surface. International Journal of Digital Earth, https://doi.org/10.1080/17538947.2021.1937352. (IF = 4.606)

  [31] Paul PK, Zhang YQ*, Ma N, Mishra A, Panigrahy N, Singh R, (2021). Selecting Hydrological Models for Developing Countries: Perspective of Global, Continental, and Country Scale Models over Catchment Scale Models. Journal of Hydrology, 126561. (IF = 6.708)

  [32] Zhang XZ*, Wang YP*, Rayner PJ, Ciais P, Huang K, Luo YQ, Piao SL, Wang ZL, Xia JY, Zhao W, Zheng XG, Tian J, Zhang YQ*, (2021). A small climate-amplifying effect of climate-carbon cycle feedback. Nature communications, 12, 2952, https://doi.org/10.1038/s41467-021-22392-w. (IF = 17.690)

  [33] Naeem S, Zhang YQ*, Zhang XZ, Tian J, Abbas S, Luo LL, Meresa HK, (2021). Both climate and socioeconomic drivers contribute in vegetation greening of the Loess Plateau. Science Bulletin, 66, 1160–1163. (IF = 20.577)

  [34] Song PL, Zhang YQ*, Tian J. Improving Surface Soil Moisture Estimates in Humid Regions by an Enhanced Remote Sensing Technique, Geophysical Research Letters, 2021, https://doi.org/10.1029/2020GL091459. (IF = 5.576)

  [35] Zhou XY, Zhang YQ*, Beck HE, Yang YH, (2021). Divergent negative spring vegetation and summer runoff patterns and their driving mechanisms in natural ecosystems of northern latitudes, Journal of Hydrology, 2021, 592, 125848. (IF = 6.708)     

  [36] Nagdeve M, Paul PK*, Zhang YQ*, Singh R, (2021). Continuous Contour Trench (CCT): Understandings of hydrological processes after standardisation of dimensions and development of a user-friendly software for standardization, Soil & Tillage Research, 104792. (IF = 7.366)

  [37] Guo YH, Zhang YQ*, Zhang L, Wang ZG. Regionalization of hydrological modeling for predicting streamflow in ungauged catchments: A comprehensive review, WIREs Water, 2020, DOI: 10.1002/wat2.1487. (IF = 7.428)

  [38] Huang Q, Qin GH, Zhang YQ*, Tang QH, Liu CM, Xia J, Chiew FHS, Post D, (2020). Using Remote Sensing Data‐based Hydrological Model Calibrations for Predicting Runoff in Ungauged or Poorly Gauged Catchments, Water Resources Research, doi: 10.1029/2020WR028205. (IF = 6.160)

  [39] Li CC, Zhang YQ*, Shen YJ, Yu Q, (2020). Decadal water storage decrease driven by vegetation changes in the yellow river basin, Science Bulletin, doi://10.1016/j.scib.2020.07.020. (IF = 20.577)

  [40] Kong DD, Zhang YQ*, Wang DG, Chen JY, Gu XH*, (2020). Photoperiod explains the asynchronization between vegetation carbon phenology and vegetation greenness phenology, Journal of Geophysical Research: Biogeosciences, https://doi.org/10.1029/2020JG005636. (IF = 4.430)

  [41] Luan JK, Zhang YQ*, Tian J, Meresa H, Liu DF, (2020). Coal mining impacts on catchment runoff, Journal of Hydrology, doi: 10.1016/j.jhydrol.2020.125101. (IF = 6.708)

  [42] Zhang YQ*, Chiew FHS, Liu CM, Tang QH, Xia J, Tian J, Kong D, Li C, (2020). Can remotely sensed actual evapotranspiration facilitate hydrological prediction in ungauged regions without runoff calibration?, Water Resources Research, 56, e2019WR026236. (IF = 6.160)

  [43] Li CC, Zhang YQ*, Shen YJ, Kong DD, Zhou XY, (2020). LUCC-driven changes in gross primary production and actual evapotranspiration in northern China, Journal of Geophysical Research: Atmospheres, 125, e2019JD031705. (IF = 5.217)

  [44] Song XY, Sun WY, Zhang YQ*, Song SB, Li JY, Gao YJ, (2020). Using hydrological modelling and data-driven approaches to quantify mining activities impacts on centennial streamflow, Journal of Hydrology, 2020, 124764. (IF = 6.708)

  [45] Zhang JL, Zhang YQ*, Song JX*, Cheng L, Paul PK, Gan R, Shi XG, Luo ZK, Zhao PP, (2020). Large-scale baseflow index prediction using hydrological modelling, linear and multilevel regression approaches, Journal of Hydrology, 585, 124780. (IF = 6.708)

  [46] Aryal S*, Zhang YQ*, Chiew FHS (2020). Enhanced low flow prediction for water and environmental management, Journal of Hydrology, 584, 124658. (IF = 6.708)

  [47] Sun WY, Song XY, Zhang YQ*, Chiew FHS, Post D, Zheng HX, Song SB, (2020). Coal mining impacts on baseflow detected using paired catchments, Water Resources Research, 56(2), e2019WR025770. (IF = 6.160)

  [48] Tian J, Zhang YQ*, (2020). Detecting changes in irrigation water requirement in Central Asia under CO2 fertilization and land use changes, Journal of Hydrology, 583, 124315. (IF = 6.708)

  [49] Naeem S, Zhang YQ*, Tian J, Qamer FM, Latif A, Paul KP, (2020). Quantifying the Impact of Anthropogenic Activities and Climate Variations on Vegetation Productivity Change of China from 1985-2015. Remote Sensing, 12, 1113, doi:10.3390/rs12071113. (IF = 5.349)

  [50] Zhang YQ*, (2020). Using LiDAR-DEM based rapid flood inundation modelling framework to map floodplain inundation extent and depth, Journal of Geographical Science, 30 (10), 1649-1663. (IF = 4.012)

  [51] Kong DD, Zhang YQ*, Gu XH, Wang DG, (2019). A robust method for reconstructing global MODIS EVI time series on the Google Earth Engine, ISPRS Journal of Photogrammetry and Remote Sensing, 155, 13-24. (IF = 11.774)

  [52] Zhang YQ*, Zheng HX, Herron N, Liu XC, Wang ZG, Chiew FHS, Parajka J, (2019). A framework estimating cumulative impact of damming on downstream water availability. Journal of Hydrology, 575, 612-627. (IF = 6.708)

  [53] Sun WY, Mu XM*, Gao P, Zhao GJ, Li JY, Zhang YQ*, Chiew F, (2019). Landscape patches influencing hillslope erosion processes and flow hydrodynamics, Geoderma, 353, 391-400. (IF = 7.422)

  [54] Zhang YQ*, Kong DD*, Rong G, Chiew FHS, McVicar TR, Zhang Q, Yang YT, (2019). Coupled estimation of 500m and 8-day resolution global evapotranspiration and gross primary production in 2002-2017, Remote Sensing of Environment, 222, 165-182. (IF = 13.850ESI TOP 1% highly cited paper)

  招生专业:自然地理学

  招生方向:蒸散发机理和过程、生态水文、遥感水文、干旱和洪水极端水文过程模拟和预报

  通讯地址:北京市安外大屯路甲11 中国科学院地理科学与资源研究所陆地水循环及地表过程重点实验室 邮编:100101

  电话:86 10 64856515 传真:86 10 64889169

  电子信箱:zhangyq@igsnrr.ac.cnyongqiang.zhang2014@gmail.com

  更新日期:202358